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Abstract: This paper examines the issue of the generation of optimal control policies where there are
explicit constraints upon the control values and there is limited knowledge of the complex economic
system. The paper develops a methodology where the constrained optimal control is based upon a
separate model that predicts the policy targets for the economic system. The methodology as applied to

a macroeconomic model.
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1. INTRODUCTION

This paper extends the use of optimal control to
the situation where there are explicit constraints
on the controls. It is also concerned with the case
where there is limited knowledge of the economic
system. Linear quadratic optimal control has been
used extensively in the analysis of macroeconomic
policy [see for example, Kendrick, 1981; Neck
and Matulka, 1994]. Generally though, economic
systems are not linear [see for example, Powell
and Murphy, 1997}, and social loss functions are
not quadratic [see for example, Orphanides and
Wieland, 2000]. The linear model and quadratic
social loss function are used to approximate the
economic system and policy objectives. In this pa-
per we explicitly take into account this approxima-
tion as limited knowledge of the economic system.

Linear quadratic optimal control can generate
control policies that are not achievable in an
economy. To allow for this under linear quadratic
optimal control the control is limited through the
choice of weights in the social loss function. In
this paper we also introduce constraints upon the
control variables so that they may be limited to
economically realistic values.

The paper develops a methodology whereby the
constrained optimal control is based upon a sep-
arate learning model that predicts the policy tar-
gets of the economic system. A subset of the con-

Constrained optimal control; Model based predictive control; Quadratic programming

trol is applied to the economic system and the
methodology updates the predictive model before
developing the next set of constrained optimal
controls. The basis of the approach is similar to
a range of techniques developed in the control en-
gineering for large complex processing systems.
The approach developed here fits with the class
of model predictive control and model algorithmic
control.

2. THE PROBLEM

The overall approach is to develop a separate
model that learns to behave like the economic
system with respect to the control and policy
target variables. This follows the approach of
Herbert [1998], but in this case the model is
used to predict future states of the economic
system. Using the predicted states an optimal
control strategy is developed and a subset of this
strategy is applied to the economic system. After
the control is implemented the predictive model is
updated based on the new observed states of the
economic system and a new set of optimal controls
is generated. The overall process then continues.

The optimal control is based upon a prediction of
the behaviour of the states of the economic system
for a window of time. We use a standard discrete-
time approach. Let %(k + j|k) be the prediction
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of the states of the economic system at the time
point k + j made at the time point-k. The state
predictions are made for a fixed length window of
time, so that time-points vary from the beginning
of the time-window, N, to the end of the time-
window, Ny. In the control strategy this window
will slide over time.

Knowledge is limited about the states of the
economic system, and we use predications based
upon a standard, state-based, linear, time-varying,
model. For the next time-step in a particular time-
window, this model is of the form:

X(k+1|k) = A(k)x(k|k) + B(k)u(k)
+C(k)2(k|k) (1)
where
X represent the vector of predicted

states of the economic system;
u represent the vector of control vari-
ables; and,
represent the vector of predicted
exogenous variables;

N>

The initial conditions of the prediction model of
Equation 1 are known, with %(1]|k) = x;. The pre-
dicted values of the exogenous variables are known
for the entire time-window. The time-varying pa-
rameter matrices, A(k), B(k) and C(k), are also
known. They may be time-varying through the in-
troduction of a discount factor so that future time
periods are discounted in the control strategy.

The optimal control strategy is based upon the
predictive model and is applied to the economic
system. The control strategy is based on a subset
of the predicted states, and, further, a subset of
the control strategy is applied to the economic
system.

For the control strategy, desired values of the
states of the economic system, x4, are assumed to
be known for the predictive time-window.The aim
of the control strategy is to move the economic
system to this desired state trajectory, so that
the desired values for the controls, ug, are those
that maintain x4 in the steady-state. These can
be calculated.

As is common with many economic systems,
we assume that there are more target states
than there are control variables. Thus trade-offs
are necessary. In the unconstrained case, we use
the least squares approach of minimising the
Euclidean norm.

In the constrained case, the optimal control strat-
egy is based upon minimising the cost (or social

loss) function given by:

Ny
1 . - .
J(k) = = “xd(k—i-'t) —X(k +7’Ik)||2Q(z)
2

i=N,
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+§i§ |lwa(k — 1+ 1)

—u(k — 1+1)|5 2

That is, the sum of weighted, squared, deviations
from the desired values. The cost function is
subject to level constraints on the controls. These
are upper and lower bounds and are given by:

u(i) < u(i) < (i) 3)

The cost function can also be subject to rate
changes on the controls, so that not only is the
control level bounded but the amount by which it
may move is limited. These constraints are given
by:

u(i) —ufi - 1) < Ay(9) (4)

Notice that bounds on the levels and rates of
change may vary with time.

In the cost function, the time-varying weighting
matrices, @(i) and R(:¢) are known. They may,
again, include a discount factor for future time-
periods.

Of course, the problem is to find the controls that
satisfy Equations 1 through 4. The approach taken
is to first stack-up the predictive model over time.
In the case of the model being time-invariant and
for a time-window from N, = 1 to Ny = n, the
stacked-up model can be written as:

X =Gx(1)+ FU+ EZ (5)
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In the time-varying case, A™ is replaced by:
n
1146 (6)
i=1

and an appropriate time index is used for B and
C, with, for example, B(i) and C() on the main
diagonal.

To obtain a desired trajectory of states so that
X = X4, then the desired controls are given by:

FUs;= X4— EZ — Gx(1) (M)

In the unconstrained case, the optimal control in
a least squares sense is given by:

Uept = (FTF)'FT(Xy — EZ - Gx(1))  (8)

For the constrained case, Equation 2 can be re-
written as:

1
J = E(Xd ~-X)TH, (X;- X)

45U~ VY Hy(Us = U) (9)

Substituting for X from Equation 5 and for X,
from Equation 7 into Equation 9 gives:

1 1
J = S(FU)TH\FUy + 5(FU) HFU

—(FU)TH,FU + %U{ HU,

1
+§UTH2U ~-UTH,U (10)

Now the first and fourth terms in Equation 10
are constants, and thus can be left out of the
minimisation process. Thus the cost function to
be minimised can be written as:

J = %UT(FTH1F+H2)U
~-UF(FTH\F+ H)U (11)

Minimising the cost function of Equation 11 sub-
ject to the constraints of Equations 3 and 4 is a
quadratic programming problem. This generates
the constrained optimal control. Once the control
is generated for the time-window, a subset is ap-
plied to the economic system. The time-window
is moved, a new predictive model generated, new
controls are generated, and the process continues.

3. NUMERICAL APPLICATION

3.1 A Dynamic Model

The model used in the following examples is
based upon the model Extended Dornbush Model
(EDBM) of Powell [2000]. The aim of that model
is to generate a calibrated, stylised model that
has monetary dynamics that behave in the same
manner as the larger (100 equation) Murphy
macroeconometric model of the Australian econ-
omy [Murphy, 1988a; Murphy, 1988b; Powell and
Murphy, 1997]. Both models have rational expec-
tations and rapid short-run adjustments in their fi-
nancial markets. Both models incorporate key fea-
tures of the Dornbush [1976] model.

The model used here modifies the EDBM. Firstly,
the dynamics of actual aggregate demand (GDP)
are expanded as the IS curve is not contempo-
raneous with actual aggregate demand. Secondly,
the dynamics of the domestic price level and ex-
change rate are developed by discretising the rate
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Table 1. Model Equations
Equations of Extended Dornbush Model

Short-run disequilibrium equation

Actual Aggregate Demand

a(t) = YAt — 1) + p(t)(1 — P)a(t - 1)
+(1 = (@)1 —Y)a(t - 2)

Convex weighting coefficient

1<¥<0

Lag weighting function

p(t) = xexp(—pt)  (p>0)

Short-run equilibrium equations

Equilibrium IS Curve

A=pg+6(p*—e—p)—or+qy+ry*

LM Curve

m-—p=dy—Ar

Uncovered Interest Parity

r=r*+z

Expected rate of currency depreciation

r=—¢é
Phillips Curve
p=m(a—-y)

Long-run equations
Neutrality of Money
p(T) =m(T) - y(T)
Purchasing Power Parity
p(T) =p*(T) — e(T)

of inflation, p, and the rate of appreciation of
the currency, é. A backwards-difference approxi-
mation has been used.

The structural form of the model is given in
Table 1; the variables used in the model are
given in Table 2; and the parameters used in the
following simulations are given in Table 3.

The resultant model is a second-order, linear,
time-varying, discrete model in actual aggregate
demand, a, the price level, p, and the exchange
rate, e. It can be written as:

x(k +1) = A(k)x(k) + Bu(k) + Cz(k)  (12)

with

x(k) = [a(k), p(k),e(k),a(k—1)]T rep-
resenting the states;
u(k) = m(k) representing the controls;

Table 2.

Model Variables

Variables of Extended Dornbush Model

Variable

Description

a

g

3

*

*

L I T B P~ <

real aggregate demand (state)

real aggregate government expenditure
(exogenous)

currency spot exchange rate (state)
(foreign currency price of a

unit of domestic currency)

nominal quantity of money (control)
price level (state)

foreign price level (exogenous)

rate of price inflation

nominal interest rate

foreign nominal interest rate (exogenous)
expected rate of depreciation of currency
real aggregate supply (exogenous)
(permanent income or sustainable
aggregate demand)

real income of rest of the world

(exogenous)

The parameter matrices are:

(k) xe #* (13)
o = pk)(1-1) (14)
g
6 = —v(0-3) (15)
& = (1-pk)1-19) (16)
(& & —v6 &
Ar 1 0 0
Aky = |0 = 1 0 (17)
1 0 0 0
-
A
0
B = |4 (18)
0
[ & yu 9s yr 0
~Ar 0 0 0 0
¢ = =22 9 0 0 A (19)

and,

z(k) = [y(k), g(k), p* (k), y* (k),r* (k)]T
representing the exogenous vari-
ables

where A is the step-size used in the discretisation.

The model has dynamics similar to that of EDBM
(and the Murphy Model). It may be considered as
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Table 3. Model Parameter Values
Parameters for EDBM
Parameter | Value

P 0.75
X 3.5
p 0.5
I 0.3
é 1.1
o 0.2
¥ 0.5
T 0.25
) 0.5
A 7
T 0.75
A 1
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Figure 1. Model response to no control. Open-loop

initial condition response.

a calibrated model with time periods of a quarter
of a year. With the parameters as in Table 3 the
eigenvalues of the state equation driving parame-
ter matrix vary from A(A(0)) = [0.6091,0.6408 +
0.77114,0.7657] to A(A(40)) = [-0.3058,0.7502 +
0.4454:,0.8053] so that the transient dynamics are
stable but oscillatory.

3.2 Application

In this application the economic system is the
model developed in Section 3.1. The scenario con-
sidered is that where a price shock is introduced to
the economic system. This is a scenario that has
recently occurred in Australia with the introduc-
tion of the Goods and Services Tax. In the scenario
the economic system is at a steady-state, the price
shock occurs and then the economic system moves
to a new steady-state.

For this scenario, the model is assumed to be
expressed in terms of deviations about the new
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Figure 2. Unconstrained control strategy.
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Figure 3. Constrained control strategy.

steady-state. The aim of the control strategy is
to move the states and controls to zero from the
initial price shock. The price shock occurs at time
zero, k = 0.

The economic system we use is the model with the
addition of random shocks. This can be written as:

x(k + 1) = A(k)x(k) + Bu(k) + e(k) (20)
where

x representing the states as devia-
tions from their respective post-
shock steady-state; and,

u representing the control as devia-
tions from its post-shock steady-
state value.

€ idd(0,X) represents the random
shocks and is white Gaussian noise.

The states of the economic system with no control
policy is given in Figure 1.

The model used for the basis of the control strat-
egy is the deterministic, time-invariant version of
the model. That is:

%(k + 1|N,) = A%(k|N,) + Bu(k)  (21)
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with

k € (N5, Nys) = (1,10), being the time-
window, and

A, the post-shdck, steady-state value
of the state driving parameter ma-
trix.

The application compares the constrained and
unconstrained optimal control strategies under
this scenario. In the unconstrained case the control
strategy is created by solving Equation 8 for the
time-window.

In the constrained case, the control strategy is de-
veloped by minimising Equation 11 over the time-
window subject to the constraints on the con-
trols (Equation 3). Future time periods are dis-
counted in the weighting matrices of deviations
of states from their desired values. In the appli-
cation Q(k) = o(k)[[1,1]7[1,0.001)T]T. That is,
the time-discount factor is the same as for the
EDBM model. Further, the three endogenous vari-
ables are weighted equally, the extra delayed state
(a(k — 1)) is weighted much less than its counter-
part (a(k)). The deviation from the desired control
is not weighted, so that R(k) = 0, Vk. The controls
are constrained so that —0.05 < u(k) < 0.1 for the
entire time-window.

The predictive model is the time-invariant model
of Equation 21, but with a time-horizon, Ny — N,
of 10 time-periods. Thus the predictive model
knowledge is limited by the time-horizon limita-
tion, by not knowing the complete model structure
as the predictive model is time-invariant, and by
not knowing about the random shocks.

In this application the optimal control strategy is
based on the predictive model for the window of
time. A subset of the control strategy is applied to
the economic system. After the control has been
applied a new set of data for the states of the
economic system is available. The window is then
slid forward in time, and a new control strategy is
developed. The entire process is then continued.

Figures 2 and 3 show the simulation results of
the control strategies for the unconstrained and
constrained cases respectively. The random shocks
on the states act independently on each state and
all have a standard deviation of 0.05. The time-
window is 10 periods wide®. The first time-period’s
control is applied to the economic system. That is,
the optimal control is developed over predicting
the economic system for 10 time-periods and the
first control is applied to the economic system
before the prediction window slides along a time-
period.

Varying the window width between 5 and 15 time
periods makes little difference to the results presented in
Figures 2 and 3.

Figures 2 and 3 show that the control strategy
has the desired effects. Stronger control effort is
required in the unconstrained case but the desired
values are achieved faster though with greater
variability. The control strategy adjusting for the
random shocks can also be seen in the Figures.

4. CONCLUSION

This paper has developed a methodology for ap-
plying optimal control in the situation where there
are explicit constraints upon the control variables
and there is limited knowledge of the economic
system. The method involved the construction of
a linear predictive model for the policy targets of
the economic system, developing constrained op-
timal control policies on the predictive model, ap-
plying a subset of these policies to the economic
system and then repeating the entire process. The
methodology was applied to a small, calibrated
macroeconomic model.
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